

MATHEMATICS EXTENSION 1 YEAR 12 COURSE

Name:

Initial version by H. Lam, March 2014. Last updated April 29, 2025, with major revision in March 2020 for Mathematics Extension 1. Various corrections by students and members of the Mathematics Department at Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under CC BY 2.0.

Symbols used

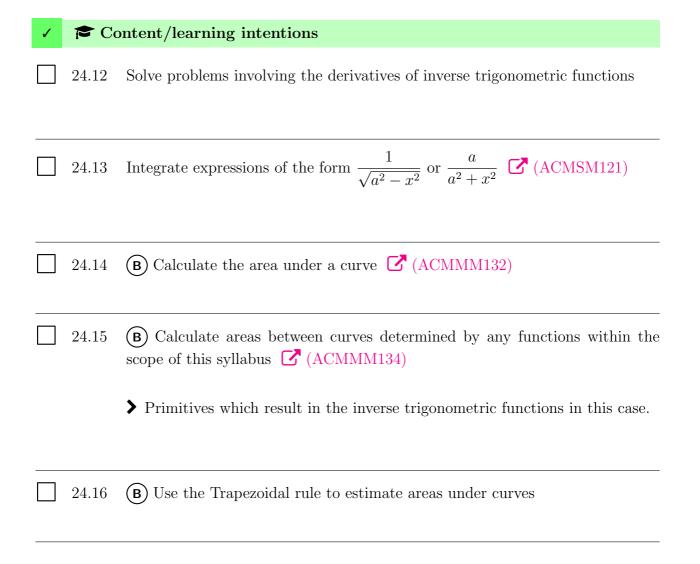
- Beware! Heed warning.
- (A) Mathematics Advanced content.
- (x1) Mathematics Extension 1 content.
- (x2) Mathematics Extension 2 content.
- Literacy: note new word/phrase.
- Formulae/facts must be memorised.
- Available on the NESA Reference Sheet.
- ${\mathbb R}\,$ the set of real numbers
- $\forall \ \, \text{for all} \\$

Syllabus outcomes addressed

- ME11-3 applies concepts and techniques of inverse trigonometric functions and simplifying expressions involving compound angles in the solution of problems
- **ME12-4** uses calculus in the solution of applied problems, including differential equations and volumes of solids of revolution

Syllabus subtopics

- $\mathbf{ME}\text{-}\mathbf{T1}$ Inverse Trigonometric Functions
- ${\bf ME-C2}~$ Further Calculus Skills

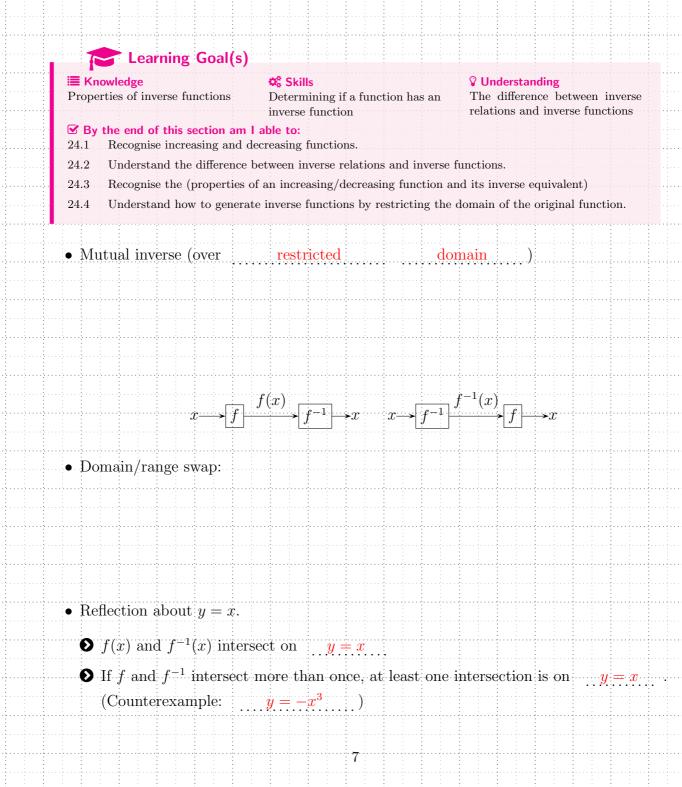

Gentle reminder

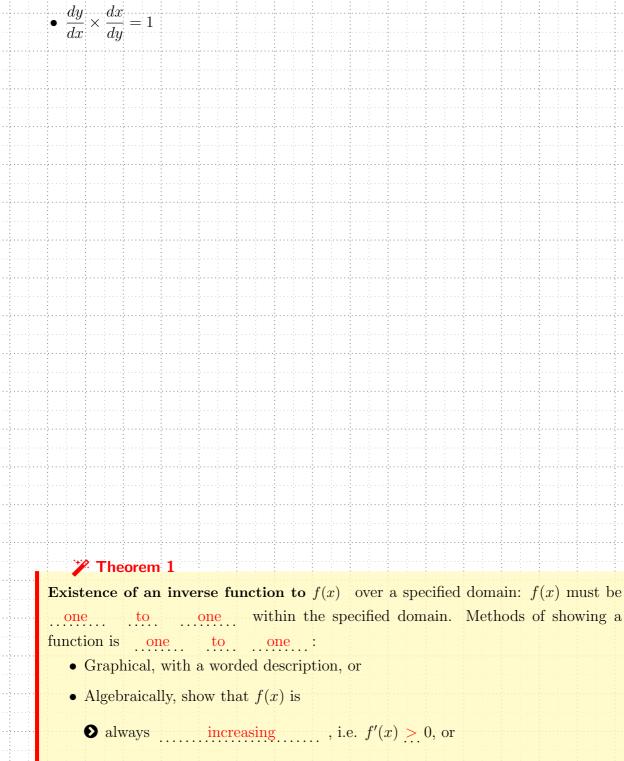
- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Year 12 Advanced* or *Cambridge-MATHS Year 12 Extension 1* will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Learning intentions & outcomes

1	r Co	ontent/learning intentions
	24.1	$\ensuremath{\mathfrak{C}}$ Recognise increasing and decreasing functions.
	24.2	$\ensuremath{\mathfrak{C}}$ Understand the difference between inverse relations and inverse functions.
	24.3	2 Recognise the
		➤ the inverse of an increasing or decreasing function is a function.
		➤ the inverse of an increasing function is an increasing function.
		➤ the inverse of an decreasing function is a decreasing function.
	24.4	C Understand how to generate inverse functions by restricting the domain of the original function.
	24.5	Define and use the inverse trigonometric functions. \bigcirc (ACMSM119)
		Vinderstand and use the notation $\arcsin x$ and $\sin^{-1} x$ for the inverse function of $\sin x$ when $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (and similarly for $\cos x$ and $\tan x$) and understand when each notation might be appropriate to avoid confusion with the reciprocal functions.
		▶ Use the convention of restricting the domain of $\sin x$ to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, so the inverse function exists. The inverse of this restricted sine function is defined by: $y = \sin^{-1} x, -1 \le x \le 1$, and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
		▶ Use the convention of restricting the domain of $\cos x$ to $0 \le x \le \pi$, so the inverse function exists. The inverse of this restricted cosine function is defined by: $y = \cos^{-1} x, -1 \le x \le 1$, and $0 \le y \le \pi$.
		Vise the convention of restricting the domain of $\tan x$ to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, so the inverse function exists. The inverse of this restricted tangent function is defined by: $y = \tan^{-1} x, x$ is a real number, and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
		Classify inverse trigonometric functions as odd, even or neither odd nor even.

1	r Co	ontent/learning intentions
	24.6	Sketch graphs of the inverse trigonometric functions.
		> Graph transformations of the inverse trigonometric functions.
	24.7	Use the relationships $\sin(\sin^{-1} x) = x$ and $\sin^{-1}(\sin x) = x$, $\cos(\cos^{-1} x) = x$ and $\cos^{-1}(\cos x) = x$, $\tan(\tan^{-1} x) = x$ and $\tan^{-1}(\tan x) = x$, where appropriate, and state the values of x for which these relationships are valid.
	24.8	Prove and use the properties:
		⇒ $\sin^{-1}(-x) = -\sin^{-1}x$ ⇒ $\tan^{-1}(-x) = -\tan^{-1}x$
		$ cos^{-1}(-x) = \pi - cos^{-1} x $ $ cos^{-1} x + sin^{-1} x = \frac{\pi}{2} $
	24.9	Solve problems involving inverse trigonometric functions in a variety of abstract and practical situations.
	24.10	Find derivatives of inverse functions by using the relationship $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$
	24.11	(B) Use any of the functions covered in the scope of this syllabus and their derivatives to solve practical and abstract problems
		> Tangents and normals
		Curve Sketching
		> Optimisation

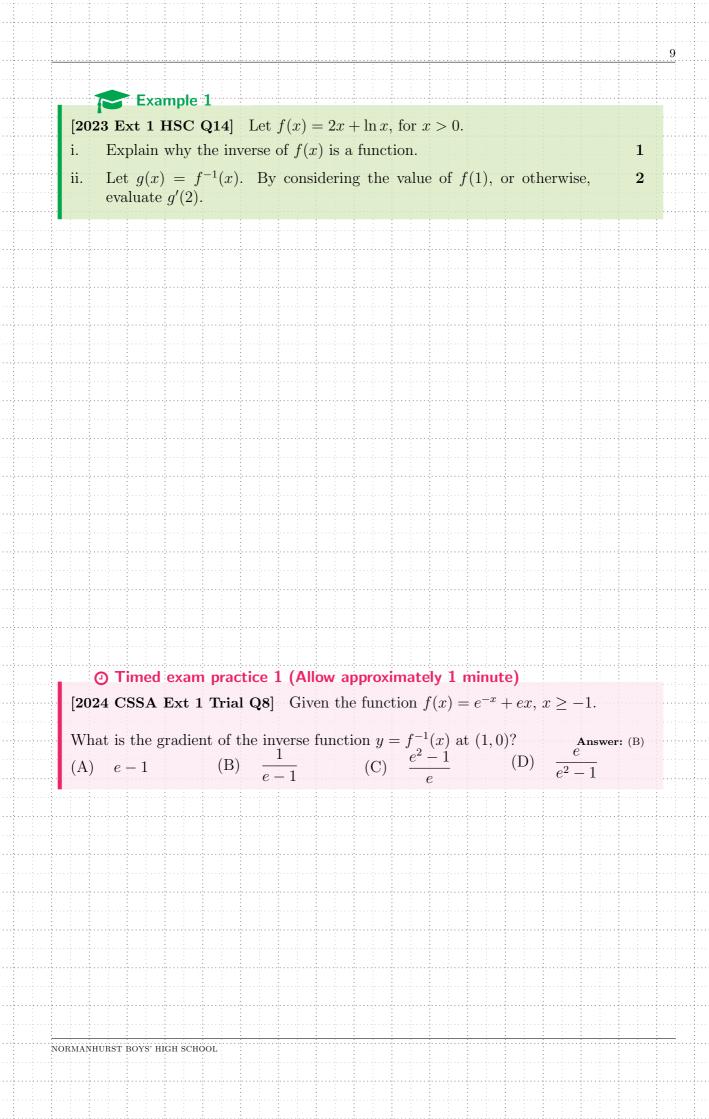


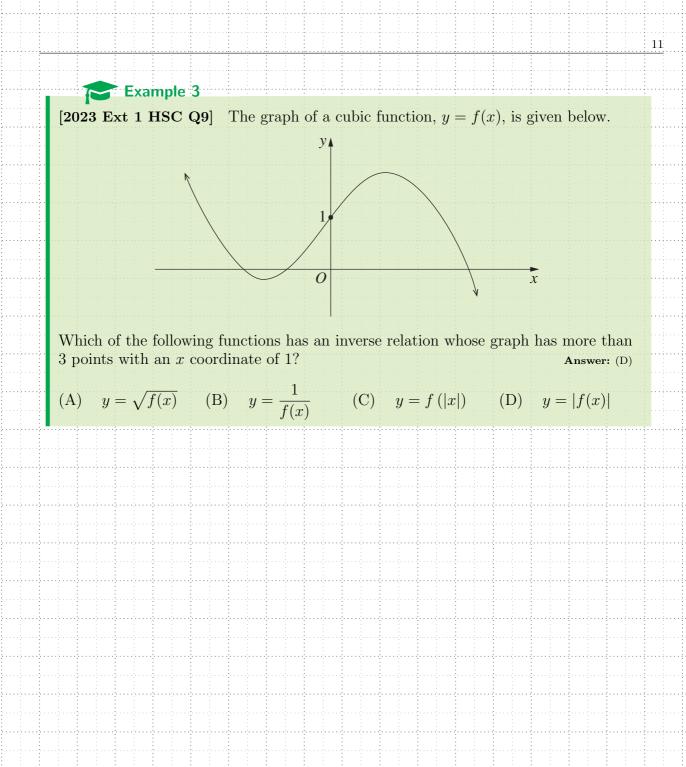

Contents

1	2 I		Functions Additional questions	7 12
2	Inve	erse tri	gonometric functions	14
	2.1		s of inverse trigonometric functions	14
		2.1.1	Inverse sine	15
		2.1.2	Inverse cosine	16
		2.1.3	Inverse tan	17
		2.1.4	Curve sketching	19
		2.1.5	Additional questions	21
		2.1.6	Harder graphs	23
	2.2	Proper	ties of inverse trigonometric functions	27
		2.2.1	Exact value problems	27
		2.2.2	Triangle problems	30
		2.2.3	Identities	32
		2.2.4	Additional questions	34
0	חית			95
3			tion of Inverse Trigonometric Functions	35
	3.1		tives of $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$	35
	3.2		ations of differentation	39 20
		3.2.1	Equation of tangent/normal	39 40
		$3.2.2 \\ 3.2.3$	Curve sketching	40
		3.2.3 3.2.4	Additional questions	$\begin{array}{c} 44 \\ 45 \end{array}$
			Optimisation	-
		$3.2.5 \\ 3.2.6$	Rates of change	$47 \\ 50$
		5.2.0	Motion	30
4	Inte	gratio	n resulting in Inverse Trigonometric Functions	52
	4.1	Simple	e integrals	52
	4.2	Harder	r integrals	54
	4.3	Applic	ations of integration	57
		4.3.1	Area problems	57
		4.3.2	Motion/Rates of change	61
Re	efere	nces		66

Section 1

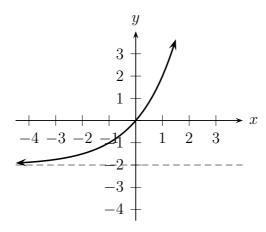
\boldsymbol{z} Inverse Functions



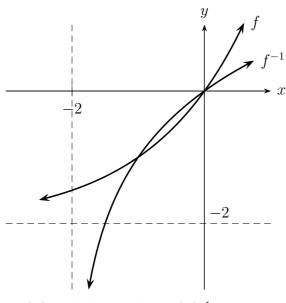

 \bullet always decreasing , i.e. f'(x) < 0

Worded description:

8



10							· · · · · · · ·	<u></u>			· · · · · · · ·		· · · · · · · ·		· · · · · · ·			: : :				<u></u>						<u></u>	<u></u>	<u></u>	<u></u>	_
				•																												
		T		E	xai	mp	le 2	2																							•••••	
	[20)21	E	\mathbf{xt}	1 I	IS	C (21:	2]	А	fui	nct	ior	ı is	de	fin	\mathbf{ed}	bv	f ((x)		4 –	- (1 -	<u>x</u>	$)^2$	foi	x	in	$^{\mathrm{th}}$	е	
			in (~	_1									,	J (()			l		2)						
	i.						graj	ph	of	<i>u</i> =	= f	(x) sl	hov	vin	e t	he	x :	anc	1 u	int	tere	cep	ts.							2	
	ii.						uat																			or	air	1			3	
															IIIC	010	· · · · ·	J	(1), (inc	1.50	au	, 10	ьu	.011	1.011	1.				
	iii.		эке	tcr	1 T I	ne j	graj	pn	OI	<i>y</i> =	= J		(x)	•																	1	
																					А	nsv	ver:	<i>y</i> =	= 2	-2_{1}	/4 -	\overline{x} ,	(-0	0, 4]		
		ſ		m	oor	tai	nt i	101	te		•••••																					
	A	Ε)on	't i	jus	t ra	and	on	ıly	\mathbf{sel}	lect		ny	sol	uti	on	ar	isir	ng	froi	m a	a q	uac	lra	tic	! /	1 l w	ays	3 gi	ive	a	
							re o																					Ű	Ŭ			
							•••••	•••••			•••••	••••	• • • • •]•		•••••	••••			• • • • •		•••••											
											•••••			•	•••••										• • • • •		•••••				•••••	
											•••••		•••••		•••••													•••••				
	•••••••										•••••		•••••		•••••						•••••		• • • • •		•••••			•••••			•••••	
											•••••		•••••		•••••						•••••		•••••		•••••			••••	• • • • •	••••	••••	•
											•••••				•••••						•••••		•••••					•••••		•••••	•••••	
													•••••																			
				•										• • • • •	•••••						•••••										•••••	
														• • •																		
																				•												•
							•••••				•••••		• • • • •								• • • • •											
														•																		
																												•••••			•••••	
																					• • • • •											
																				• • • •				• • • •								
				-				-																				-		-		



1.0.1 Additional questions

1. [2017 VCE Mathematical Methods Paper 2 Q4] (16 marks) Let $f : \mathbb{R} \mapsto \mathbb{R} : f(x) = 2^{x+1} - 2$. Part of the graph of f is shown below.

- (a) (Modified to suit NSW syllabus) State the transformations required to **2** the graph of $y = 2^x$ to obtain $y = 2^{x+1} 2$.
- (b) Find the rule and domain for f^{-1} , the inverse function of f.
- (c) Show that f(x) and $f^{-1}(x)$ intersect at (-1, -1), and hence find the area **3** bounded by the graphs of f(x) and $f^{-1}(x)$.
- (d) Part of the graphs of f and f^{-1} are shown below.

Find the gradient of f and the gradient of f^{-1} at x = 0.

The functions of g_k , where $k \in \mathbb{R}^+$, are defined with domain \mathbb{R} such that $g_k = 2e^{kx} - 2$.

- (e) Find the value of k such that $g_k(x) = f(x)$.
- (f) Find the rule for the inverse functions g_k^{-1} of g_k , where $k \in \mathbb{R}^+$.

1 1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

- (g) (Modified to suit NSW syllabus)
 - i. State the transformations required that transforms the graph of g_1 **1** to the graph of g_k .
 - ii. State the transformations required that transforms the graph of 1 g_1^{-1} to the graph of g_k^{-1} .
- (h) Omitted due to content not in NSW syllabus.
- (i) **A** Let p be the value of k for which $g_k(x) = g_k^{-1}(x)$ has only one solution.
 - i. Find p.
 - ii. Let A(k) be the area bounded by the graphs of g_k and g_k^{-1} for all k > p.

State the smallest value of b such that A(k) < b.

Answers

(a) Translated 1 left and 2 down. (b) $f^{-1}(x) = \log_2(x+2) - 1 = \frac{1}{\ln 2} \ln(x+2) 1$ (c) $\frac{-2}{\ln 2} + 3$ (d) $f'(0) = 2 \ln 2$, $(f^{-1})'(0) = \frac{1}{2 \ln 2}$ (e) $k = \ln 2$ (f) $g_k^{-1}(x) = \frac{1}{k} \ln\left(\frac{x+2}{2}\right)$ (g) i. $g(x) = 2e^x - 2$, $g_k(x) = 2e^{kx} - 2$. Dilation of a factor of $\frac{1}{k}$ from the y axis. ii. Dilation of a factor of $\frac{1}{k}$ from the x axis. (h) Not in syllabus. (i) i. $p = \frac{1}{2}$ ii. b = 4

i ≡ Further exercises

 Ex 17A (Pender et al., 2019a)

 ● Q15-17, 18-20

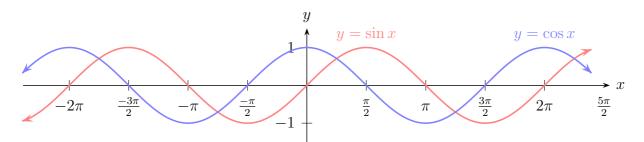
Section 2

Inverse trigonometric functions

Learning Goal(s)

Knowledge Properties of inverse trigonometric functions **Skills** Operate with the inverse trigonometric functions

Vunderstanding

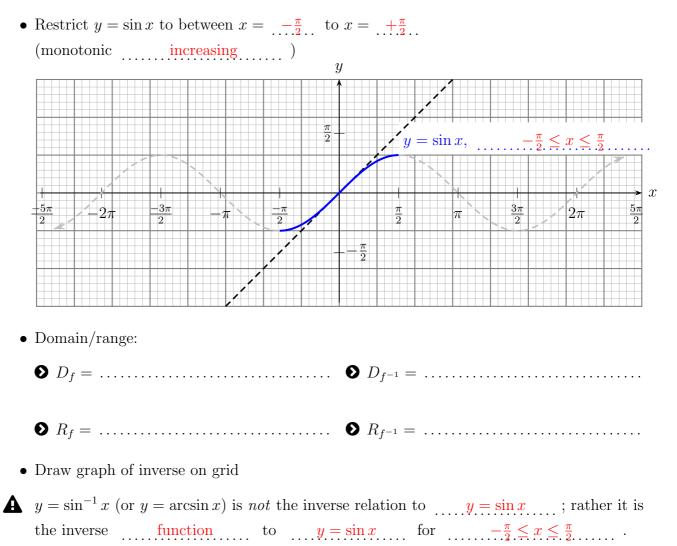

Properties of inverse trigonometric functions can be derived from the original trigonometric function

✓ By the end of this section am I able to:

24.5 Define and use the inverse trigonometric functions

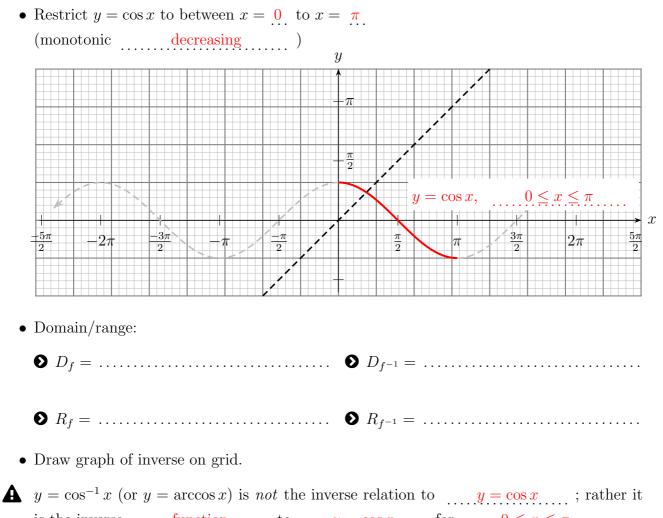
- $24.6 \qquad {\rm Sketch \ graphs \ of \ the \ inverse \ trigonometric \ functions}.$
- 24.7 Use the relationships $\sin(\sin^{-1} x) = x$ and $\sin^{-1}(\sin x) = x$, $\cos(\cos^{-1} x) = x$ and $\cos^{-1}(\cos x) = x$, $\tan(\tan^{-1} x) = x$ and $\tan^{-1}(\tan x) = x$, where appropriate, and state the values of x for which these relationships are valid.
- 24.8 Prove and use the properties
- 24.9 Solve problems involving inverse trigonometric functions in a variety of abstract and practical situations.

2.1 Graphs of inverse trigonometric functions

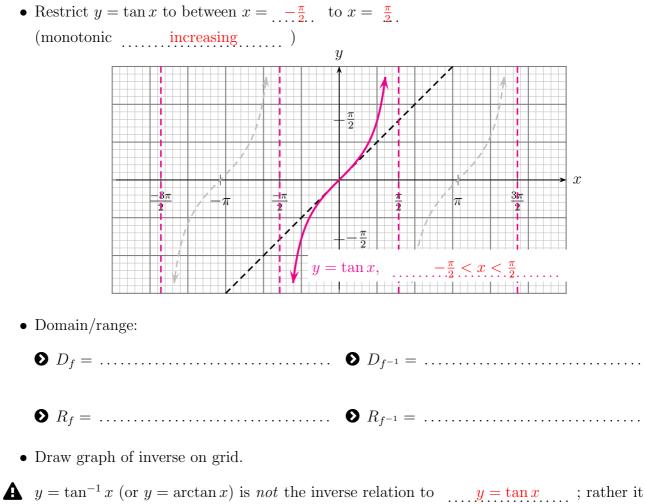

 $y = \sin x$ and $y = \cos x$ are many to one functions, thereby fails to have an inverse *function*.

Solution

Fill in the spaces


- Restrict the domain of $y = \sin x$ and $y = \cos x$ so that they become one to one (or monotonic increasing/decreasing) to obtain an inverse.
- Want first quadrant values (in terms¹4f π) included for simplicity.

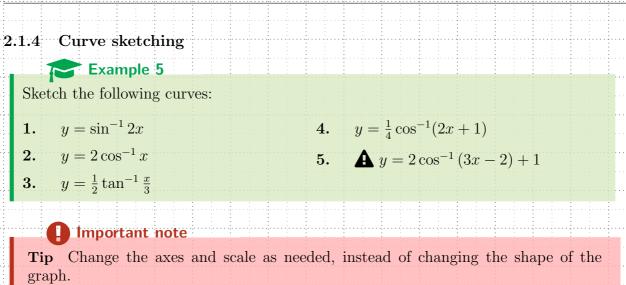
2.1.1 Inverse sine


• Draw general graph (diagrammatic) of $y = \sin^{-1} x$:

2.1.2 Inverse cosine

- is the inverse function to $y = \cos x$ for $0 \le x \le \pi$.
- Draw general graph (diagrammatic) of $y = \cos^{-1} x$:

2.1.3 Inverse tan


- is the inverse function to $y = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
- Draw general graph (diagrammatic) of $y = \tan^{-1} x$:

18

[2022 Ext 1 HSC Q13] The function f is defined by $f(x) = \sin x$ for all real numbers x. Let g be the function defined on [-1, 1] by $g(x) = \arcsin x$.

Is g the inverse of f? Justify your answer.

O Timed exam practice 2 (Allow approximately 1 minute) [2024 Ext 1 HSC Q5] Consider the function $g(x) = 2\sin^{-1}(3x)$. Which transformations have been applied to $f(x) = \sin^{-1} x$ to obtain g(x)? Vertical dilation by factor of $\frac{1}{2}$ and a horizontal dilation of $\frac{1}{3}$ (A)Vertical dilation by factor of $\frac{1}{2}$ and a horizontal dilation of 3 (B) Vertical dilation by factor of 2 and a horizontal dilation of $\frac{1}{2}$ (C)(D) Vertical dilation by factor of 2 and a horizontal dilation of 3 Example 6 [2010 CSSA Ext 1] (2 marks) By considering the graph of $y = \sin^{-1} x$ or otherwise, show that the equation $\sin^{-1} x + x - \frac{\pi}{2} = 0$ has only one real and positive root.

NORMANHURST BOYS' HIGH SCHOOL

2.1.5 Additional questions

- **1.** Sketch the following graphs:
 - (a) $y = 3\sin^{-1} 3x 1$ (b) $y = 3\tan^{-1} \frac{x}{2}$
- 2. [2021 CSSA Ext 1 Trial Q5] Which of the following function has a domain [1,5] and range $[1, 4\pi + 1]$?

(A)
$$f(x) = 2\sin^{-1}\left(\frac{x-3}{2}\right) + 1$$
 (C) $f(x) = 4\sin^{-1}\left(\frac{x-3}{2}\right) + 1$
(B) $f(x) = 4\cos^{-1}\left(\frac{x-3}{2}\right) + 1$ (D) $f(x) = 2\cos^{-1}\left(\frac{x-3}{2}\right) + 1$

3. [2022 CSSA Ext 1 Trial Q7] Which of the following is an odd function?

(A)
$$a(x) = \frac{\pi}{2} + \cos^{-1} x$$
 (C) $c(x) = \frac{\pi}{2} + \cos^{-1}(1-x)$
(B) $b(x) = \frac{\pi}{2} - \cos^{-1} x$ (D) $d(x) = \frac{\pi}{2} - \cos^{-1}(1-x)$

4. [2020 Ext 1 HSC Sample Q10] The graph of the function $y = \sin^{-1}(x - 4)$ is transformed by being dilated horizontally with a scale factor of 2 and then translated to the right by 1.

What is the equation of the transformed graph?

(A) $y = \sin^{-1}\left(\frac{x-9}{2}\right)$ (C) $y = \sin^{-1}(2x-6)$ (B) $y = \sin^{-1}\left(\frac{x-10}{2}\right)$ (D) $y = \sin^{-1}(2x-5)$

5. [2021 Independent Ext 1 Trial Q13]

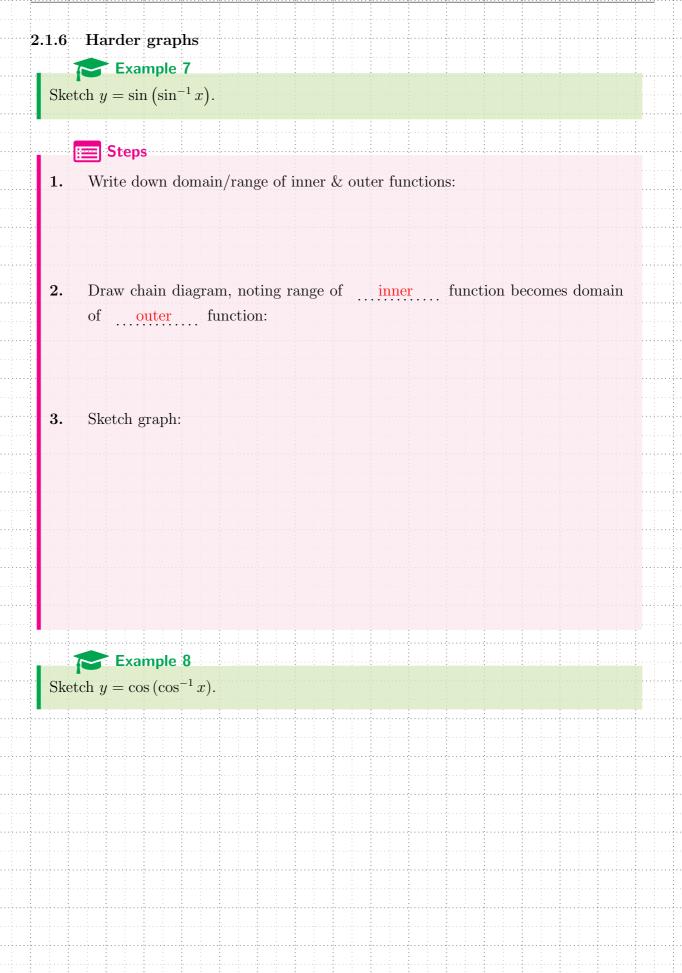
- i. Find the domain and range of the function $y = \cos^{-1}\left(\frac{x-1}{2}\right) \frac{\pi}{2}$ 2
- ii. Sketch the graph of the function $y = \cos^{-1}\left(\frac{x-1}{2}\right) \frac{\pi}{2}$ showing clearly the coordinates of any endpoints and intercepts on the coordinate axes.
- iii. Describe a transformation of the graph of the function 1 $y = \cos^{-1}\left(\frac{x-1}{2}\right) - \frac{\pi}{2}$ that would change it into the graph of an odd function.

6. [2022 Ext 1 HSC Q9] A given function f(x) has an inverse $f^{-1}(x)$.

The derivatives of f(x) and $f^{-1}(x)$ exist for all real numbers x.

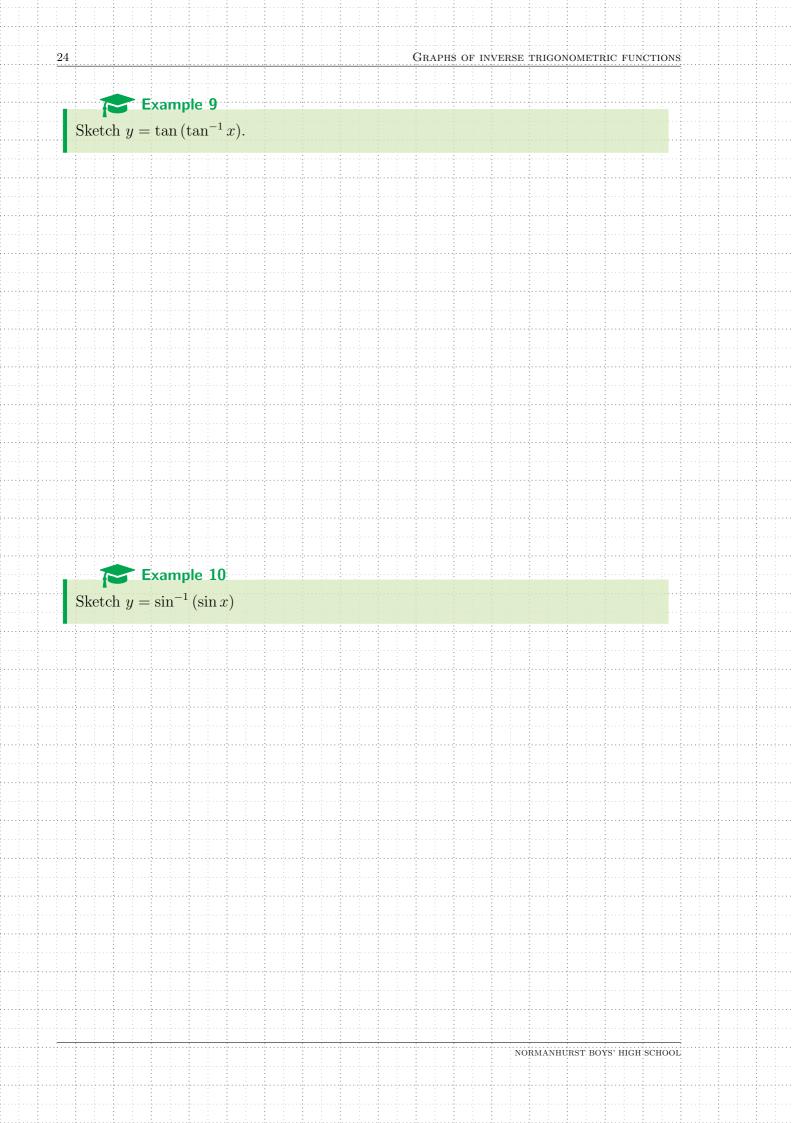
The graphs y = f(x) and $y = f^{-1}(x)$ have at least one point of intersection.

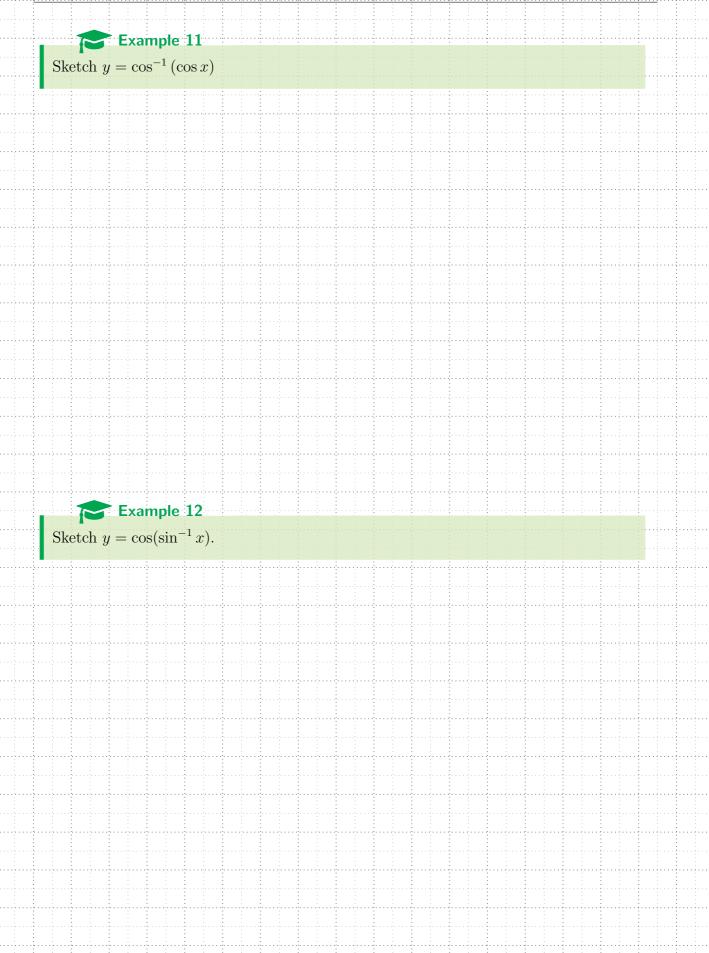
Which statement is true for all points of intersection of these graphs?

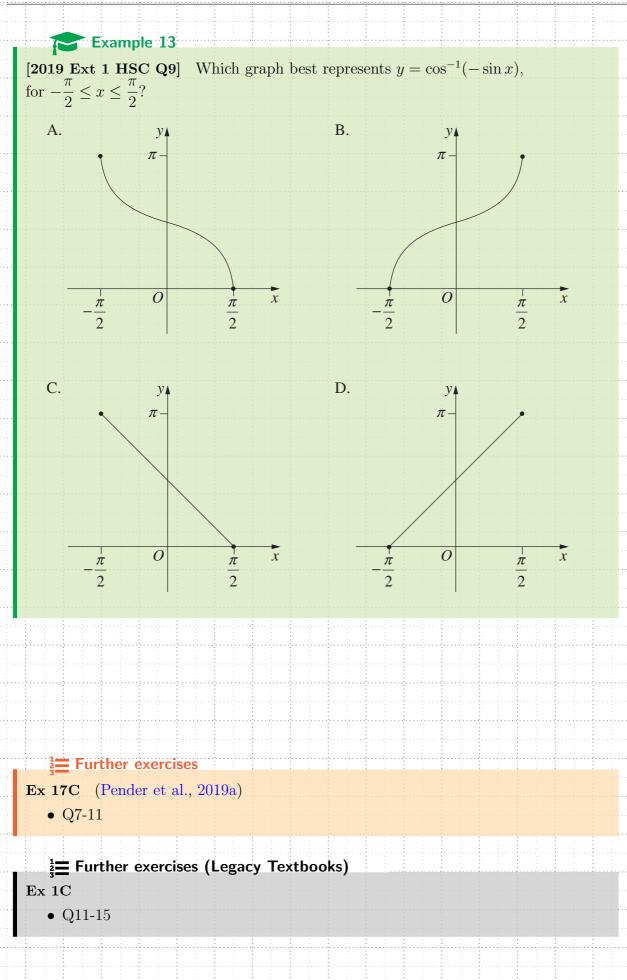

- (A) All points of intersection lie on the line y = x.
- (B) None of the points of intersection lie on the line y = x.
- (C) At no point of intersection are the tangents to the graphs parallel.
- (D) At no point of intersection are the tangents to the graphs perpendicular.

Answers

1. Check with online graphing tools. **2.** (B) **3.** (B) **4.** (A) **5.** i. $D = [-1,3], R = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ii. Check with online graphing tools iii. Translate horizontally to the left by 1 unit **6.** (D)


i **≡** Further exercises
 Ex 17C (Pender et al., 2019a)
 ● Q1, 2, 3, 6


Further exercises (Legacy Textbooks)
Ex 1C
● Q1-15



NORMANHURST BOYS' HIGH SCHOOL

23

NORMANHURST BOYS' HIGH SCHOOL

2.2 Properties of inverse trigonometric functions

Inverse trigonometric functions produce <u>angles</u> in the following quadrants: **Function** | **Quadrants**

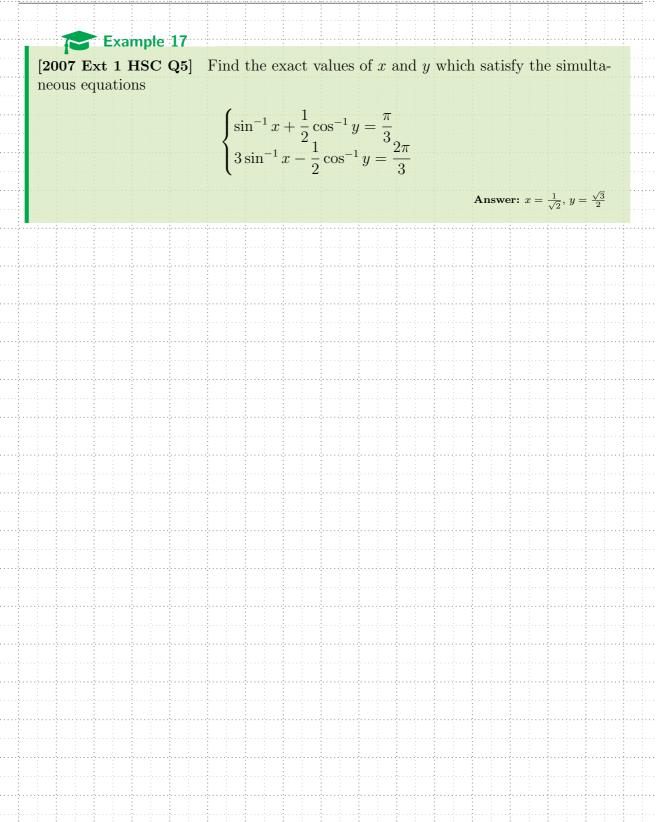
$\sin^{-1} x$	First	and '	negative	first '
$\cos^{-1}x$	First	and	second	
$\tan^{-1} x$	First	and ' \dots	negative	first '

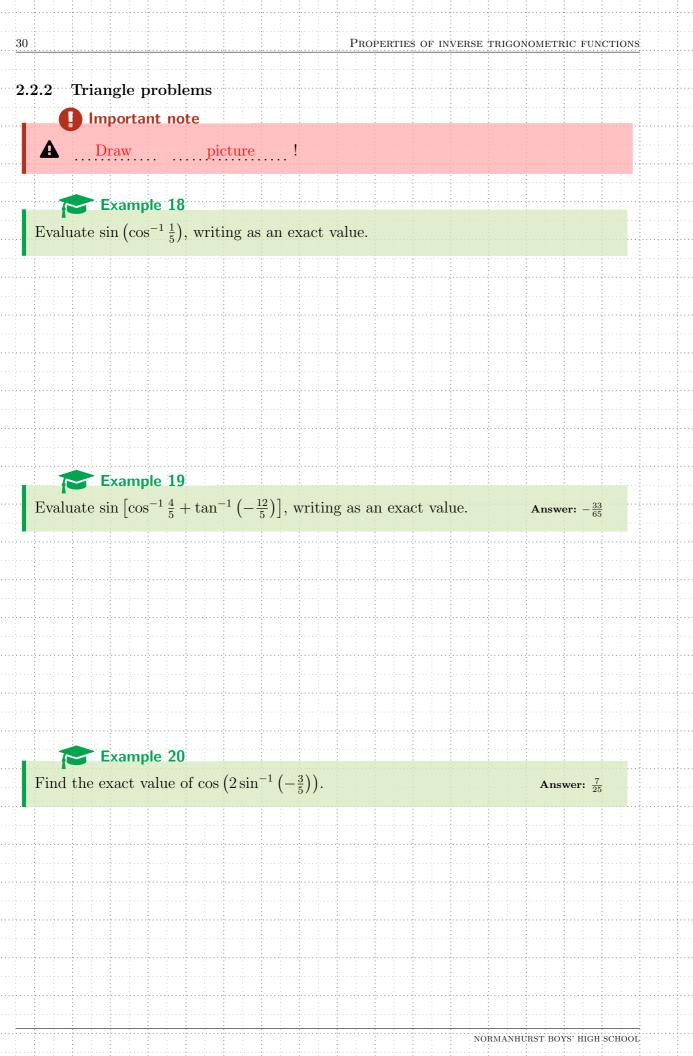
- '...... Negative first 'quadrant: $y \in \left[-\frac{\pi}{2}, 0\right]$
- First quadrant: $y \in \left[0, \frac{\pi}{2}\right]$
- Second quadrant: $y \in \left[\frac{\pi}{2}, \pi\right]$

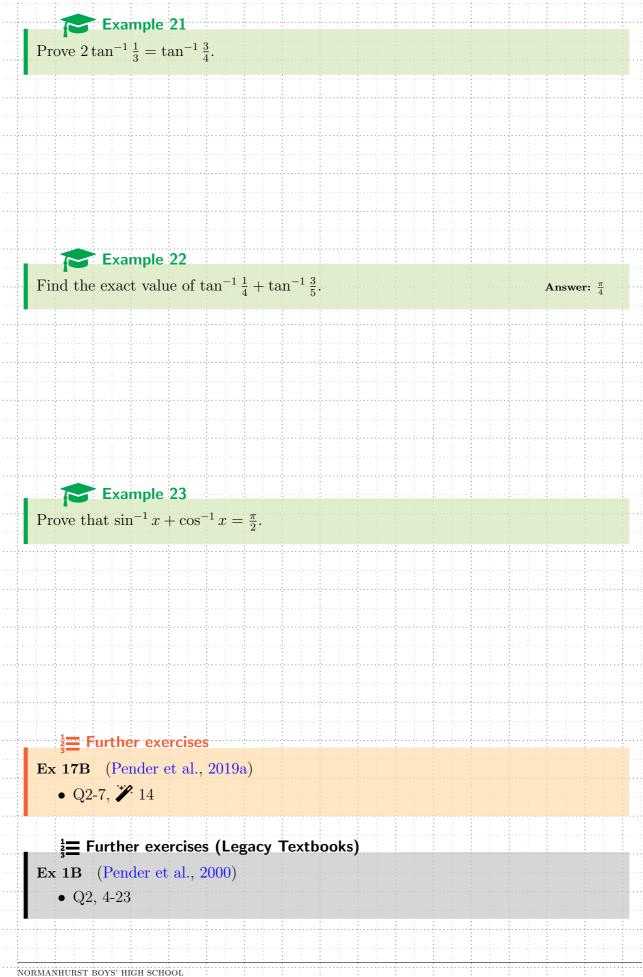
Check the range of the graphs of the inverse trigonometric functions on pages 15, 16 and 17 respectively.

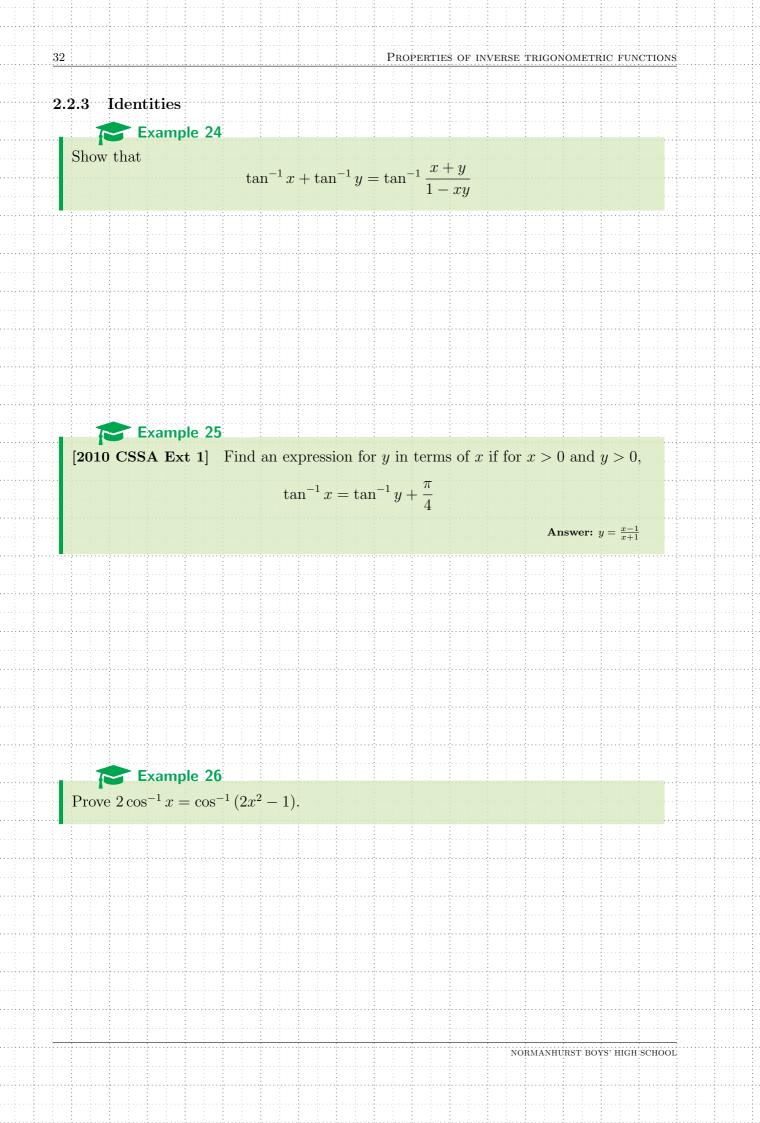
2.2.1 Exact value problems

Example 14


Evaluate, writing as an exact value:


1. $\sin^{-1} \frac{\sqrt{3}}{2}$. **3.** $\tan^{-1} \left(-\frac{1}{\sqrt{3}}\right)$ **5.** $\cos^{-1} \left(-\frac{1}{\sqrt{2}}\right)$ **2.** $\cos^{-1} \left(-\frac{\sqrt{3}}{2}\right)$. **4.** $\sin^{-1} \left(-\frac{1}{\sqrt{2}}\right)$


NORMANHURST BOYS' HIGH SCHOOL


		Proper	TIES OF INVERSE TRIGONOMETRIC FUNCTION	IS:
Example 15				
Evaluate, writing as an				
			5. $\sin^{-1}(\cos\frac{7\pi}{4})$	
2. $\cos(\tan^{-1} 1)$	4.	$\tan^{-1}\left(\sqrt{6}\sin\frac{\pi}{4}\right)$	6. $\cos^{-1}\left(\sin\left(-\frac{2\pi}{3}\right)\right)$	
		·····		
Example 16				
			5. $\tan^{-1}(\tan\frac{7\pi}{4})$	
$1. \sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$) 3.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$	5. $\tan^{-1} \left(\tan \frac{7\pi}{4} \right)$ 6. $\sin^{-1} \left(\sin \frac{5\pi}{2} \right)$	
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$) 3.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$	5. $\tan^{-1} \left(\tan \frac{7\pi}{4} \right)$ 6. $\sin^{-1} \left(\sin \frac{5\pi}{3} \right)$	
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		
1. $\sin\left(\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right)$ 2. $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$ Important note) 3. 4.	$\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$		

NORMANHURST BOYS' HIGH SCHOOL

	202																													
i	•		Ε π <	$ \begin{array}{c} \operatorname{xpl} \\ \theta \end{array} $	$ain < \pi$	w -, ł	/hy nas	t] ex	he ac	ec tly	lua on	tio le s	n solı	tan itic	$n^{-1}($	(3x)) +	- ta	un-	1	10x	;) • •	=	θ ,	whe	ere			1	
i	i.			taı																								- - - -	2	
					•																									
					• • • • • • • • • • • • • • • • • • •		•				•				*						•									
			 							•	 																			
																					•									
															-															
																 														• • • • •
							- - - -						÷	••••••							- - - - -									
			÷						 		÷		÷	•		·····										•				
								· · · ·																						
	* * * *				• • • • • • • • • • • • • • • • • • •				- 		• • • • •				*						• • • • •									
			÷													 														
			 	• • • • •							· · ·																			• • • • •
				· · · · · ·																										
								- 													- 							 		
					· · · · · · · · · · · · · · · · · · ·				• • • •		• • • •				*						* * * * *									
•••••			· · ·	· · · · · ·				•••••		•		· · · · · ·		• • • • • •		· · · · · ·					· · · · · · · · · · · · · · · · · · ·						· · · · · ·	(••••
				-	· · · · · · · · · · · · · · · · · · ·			- - - - - - - - -										· · ·			· · · ·							· · · ·		
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-		•	•			• • • • • • •	· · · · · · · · · · · · · · · · · · ·	****		· · · · · · ·			*							*****		
					· · · · · · · · · · · · · · · · · · ·			· · · · · · ·			· · ·	· · ·			*												· · · · · ·	· · · · · ·		• • • •
Ma	rki	ng	crit	eri	a		• • • •				• • • •				* * * * *		• • • •				• • • • • •									
	\checkmark	1.1	12111	Prov		s.co	orre	ct (exp	olar	atio	on			· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·				· · · · · · · ·			-				· · · · · · ·		
i.	\checkmark	[Obta Prov	: :		:		:		:	equ	iäti	on	or :	r, o	r ec	luiv	alei	nt i	ner	it								• • • • •

33

NORMANHURST BOYS' HIGH SCHOOL

2.2.4 Additional questions

- 1. [2023 Ext 1 HSC Q5] Which of the following is the value of $\sin^{-1}(\sin a)$ given that $\pi < a < \frac{3\pi}{2}$?
 - (A) $a \pi$ (B) πa (C) a (D) -a
- 2. [2023 Ext 1 HSC Q7] Which statement is always true for real numbers a and b where $-1 \le a \le b \le 1$?
 - (A) $\sec a < \sec b$ (C) $\arccos a < \arccos b$
 - (B) $\sin^{-1} a < \sin^{-1} b$ (D) $\cos^{-1} a + \sin^{-1} a < \cos^{-1} b + \sin^{-1} b$
- 3. [2009 Independent Ext 1 Trial] If $\cos^{-1} x \sin^{-1} x = k$, where $-\frac{\pi}{2} \le k \le \frac{3\pi}{2}$, show that $x = \frac{1}{\sqrt{2}} \left(\cos \frac{k}{2} \sin \frac{k}{2} \right)$.
- 4. [2011 HGHS Ext 1 Trial] It is known that $\sin^{-1} x$, $\cos^{-1} x$ and $\sin^{-1}(1-x)$ are acute angles.
 - (i) Show that $\sin(\sin^{-1}x \cos^{-1}x) = 2x^2 1.$ 2
 - (ii) Hence or otherwise, solve the equation

$$\sin^{-1} x - \cos^{-1} x = \sin^{-1}(1-x)$$

giving your solution(s) as exact values.

Answers

1. (B) **2.** (B) **3.** Show **4.** $\frac{\sqrt{17}-1}{4}$

i E Further exercises
Ex 17B (Pender et al., 2019b)
● Q8-13

 $\mathbf{2}$

Section 3

Differentiation of Inverse Trigonometric Functions

Example 7 Learning Goal(s) **Example 7** Skills Using the chain rule to differentiate Using the chain rule to differentiate **Example 7** Understanding When to apply differentiation techniques from Mathematics Advanced **Example 7** Advanced **Example 7** Advanced

- 24.11 Use any of the functions covered in the scope of this syllabus and their derivatives to solve practical and abstract problems
- $24.12 \quad {\rm Solve \ problems \ involving \ the \ derivatives \ of \ inverse \ trigonometric \ functions}$

3.1 Derivatives of $\sin^{-1} x$, $\cos^{-1} x$ and $\tan^{-1} x$

$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$
(12.1)
$$\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}$$
(12.2)
$$\frac{d}{dx} (\tan^{-1} x) = -\frac{1}{1 + x^2}$$
(12.3)

E Steps **Proof of** $\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1-x^2}}$: Let $y = \sin^{-1} x$. Change subject to x: 1. $x = \sin y \qquad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$ Draw right angled triangle to represent situation: 2. x3. Find $\frac{dx}{dy}$: 4. Use $\frac{dy}{dx} \times \frac{dx}{dy} = 1$: Example 27 Following the same steps, give a proof of why $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$ and $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$.

Example 28
Differentiate:
1.
$$y = 4 \sin^{-1} 2x$$
 2. $y = \cos^{-1} \frac{x}{3}$ 3. $y = 3 \tan^{-1} \frac{x}{2}$

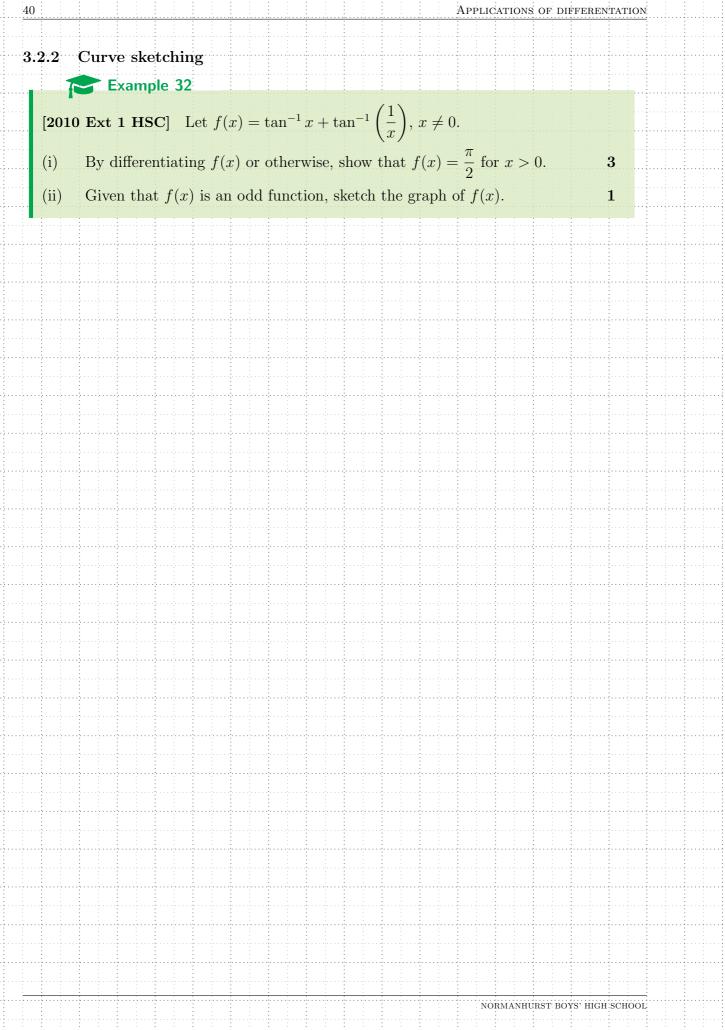
	Di	Example fferentiate with				
	1.		3.		5. $\cos^{-1}(2x\sqrt{1-x^2})$	
•••••••••••••••••••••••••••••••••••••••	2.		4.			
	••••	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••			
•••••	••••					
		· · · · · · · · · · · · · · · · · · ·		·····		
				···· · · · · · · · · · · · · · · · · ·		
				•••••		
	••••					
	••••					
	· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	<u>8x 1-n</u> 1	$\frac{5}{\sqrt{1-x^2}}$ 6. $\frac{2(1+x^6)\sqrt{12}}{3x^2}$	$\frac{1}{\sqrt{1-\frac{1}{2x\sqrt{x(1-x)}}}}$ b.	$\mathbf{A} = \frac{\mathbf{z}}{\mathbf{z}} \left(\frac{\mathbf{z}}{\mathbf{z}} - \frac{\mathbf{z}}{\sqrt{1-x}} \right)^{2} \mathbf{z} = \frac{\mathbf{z}}{\sqrt{1-x}}$	$\cos + x \operatorname{nl} + \frac{x^{2}}{\sqrt{1-x^{2}}} + 2x \sin^{-1} x 2, \frac{x^{2}x^{3}}{\sqrt{1-x^{2}}} \cdot 1 \operatorname{sus} x^{2} + \frac{x^{2}}{\sqrt{1-x^{2}}} \cdot 1 \operatorname{sus} x^{2} + $	əmsur

	tice 4 (Allow approximately 5 minutes	
[2024 Ext 1 HSC Q14] function $f(x) = \frac{kx}{kx}$ +	(3 marks) For what values of the con- arctan x have an inverse?	
function $f(x) = \frac{1}{x^2 + 1} + \frac{1}{x^2 + 1}$	arctan a nave an inverse:	Answer: $k \in [-1, 1]$
Marking criteria		
\checkmark [1] Recognises that $f(x)$ need merit	ls to be monotonically increasing or monotonica	lly decreasing, or equivalent
\checkmark [2] Correctly completes one c	of two cases, or equivalent merit	

 \checkmark [3] Provides correct solution

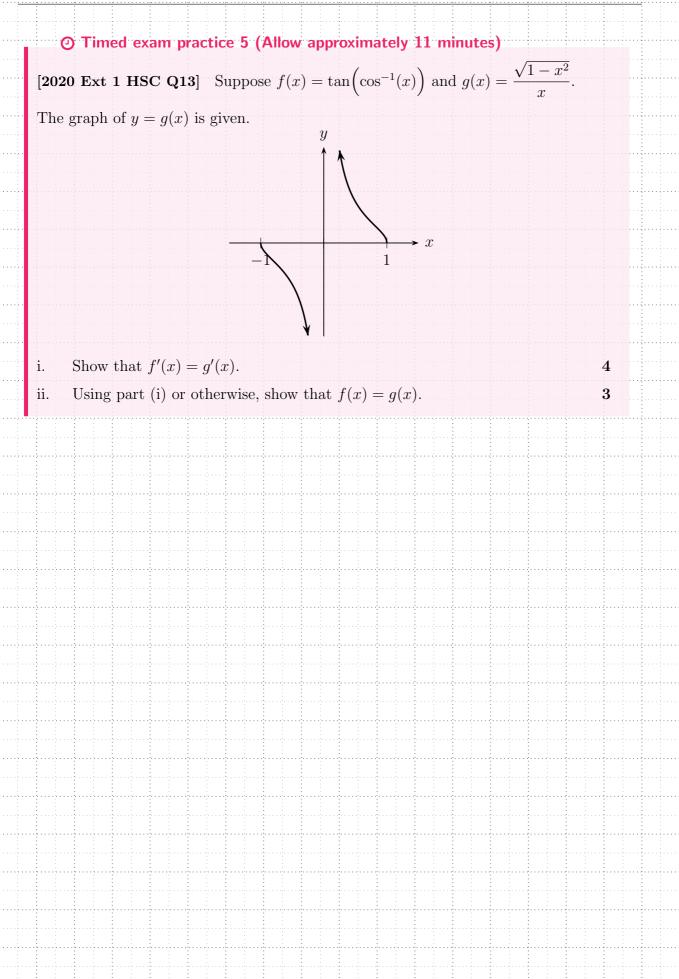
NORMANHURST BOYS' HIGH SCHOOL

3.2 Applications of differentation


3.2.1 Equation of tangent/normal

Example 30

Find the gradient of the tangent to $y = \sin^{-1} 2x$ where x = 0.



Find the equation of the normal to the curve $y = x \tan^{-1} x$ at $(1, \frac{\pi}{4})$. **Answer:** $16x + 4(2 + \pi)y - 2\pi - \pi^2 - 16 = 0$

[20]		SGH																								
i.	Det x =	termi - 0	ne	the	e gr	ad	ient	of	the	e ta	ing	ent	to	$^{\mathrm{th}}$	e	curve	y	_	tan⁻	-1 ($e^x)$	at	- -		2	
ii.		nce fi	nd	$ h\epsilon$	e ec	lna	tion	of	$_{\mathrm{the}}$	e ta	nge	ent	at	tha	ıt	point	•								2	
iii.		cuss														-									1	
														•••••						····	• • • • •		••••			
											: 	: :									• • •	· · ·	····;··		••••	: : :
			*									•					•									
																										:
								· · · · · · · · · · · · · · · · · · ·									:									
							•••••							•••••								•••••••	· · · ÷ ÷ · ·			
							•••••			÷		: :													••••	
												• • •														
									 					•••••							••••		••••			
											····															
												• • •					: : :									: :
		· · · · · · · · · · · · · · · · · · ·									·····	· · · · · ·					· · · · · · ·									
												•														
· · · · · · · · · · · · · · · · · · ·							•••••	••••	 		 	• • • • • • •		•••••						····	•••	•••	···· {··		••••	···· :
			· · · · · · ·																				••••			
· · · · · · · · · · · · · · · · · · ·												• • • •														: :
							• • • • • • •	•••••			•••••			•••••						····	• • • • •	••••	••••			:
											·····	· · · · · ·											••••			
																										:
												• • •		•••••									••••			:
												· · · ·														: : :
												•					•									: : :
																	*****				• • • • • •	• • • • •				
			:							÷		:					:					÷		-		:

 41°

NORMANHURST BOYS' HIGH SCHOOL

Marking criteria

i.

ii.

- \checkmark [1] Attempts one derivative, or equivalent merit
- \checkmark [2] Obtains one correct derivative or attempts both, or equivalent merit
- \checkmark [3] Obtains one correct derivative and makes some progress towards obtaining the other, or equivalent merit
- \checkmark [4] Provides correct solution
- ✓ [1] Observes that f(x) g(x) = 0, or equivalent merit
- \checkmark [2] Provides a correct solution for one part of the domain, or equivalent merit
- \checkmark [3] Provides correct solution for both parts of the domain

3

 $\mathbf{2}$

3.2.3 Additional questions

- 1. Find the equation of the tangent to $y = (\sin^{-1} x)^3$ where $x = \frac{1}{2}$.
- 2. [2002 Ext 1 HSC Q5] Consider the function $f(x) = 2\sin^{-1}\sqrt{x} \sin^{-1}(2x 1)$ for $0 \le x \le 1$.
 - i. Show that f'(x) = 0 for 0 < x < 1.
 - ii. Sketch the graph of y = f(x).

3.2.4 Optimisation

Example 34

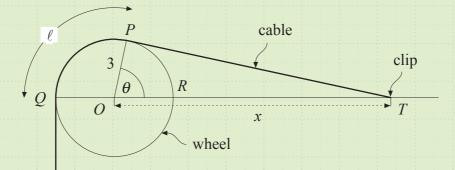
[2009 Ext 1 HSC Q7] A billboard of height *a* metres is mounted on the side of a building, with its bottom edge *h* metres above street level. The billboard subtends an angle θ at the point *P*, *x* metres from the building.

(i) Use the identity
$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
 to show that

$$\theta = \tan^{-1} \left(\frac{ax}{x^2 + h(a+h)} \right)$$

(ii) The maximum value of θ occurs when $\frac{d\theta}{dx} = 0$ and x is positive.

Find the value of x for which θ is maximum.


2

		: 				 								 																	
											<u>.</u>																				
÷	46	:			-		÷		÷		÷		•	:			A	PPLIC	ATIO	ONS	OF 1	DIFI	FER	EN:	FATI	ON			÷		
		:							:																						
:		:				 	:		:		:		•				:					:		:							
						 	•••••••							 		• • • • • • • • • • •					•••••										•••
:		:		:		 :	• • • • •		:		:			:			÷			•••••			••••	• • • •	· · · ·	••••					
· · · ·	•••••••	· · · · · ·					••••		• • • • • • •					 			 				· · · · · . :		••••		· · · · . :						• •
		÷									÷						 														
:		:			-		:		-		-			-			÷			-		:		:					-		
																	-					÷									
÷							:							 																	•••
÷	• • • • • •					 	••••		••••	••••••	÷			 :			 	• • • • • • • • •	• • • • •	•••••	•••••	÷	• • • • •	···•	····						• •
÷																	 														
	••••					 					÷			 : 			 				· · · · · ·				· · · · .						
ģ.,				:													 														
	;		: :	; ; ;		 								 			 				: ;				: 					· · · · · · ·	
													•																		
							:							-			÷		· · ·			÷									
														 																	•••
													•																		
÷	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		:		 · · • · · · · • · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	:	••••••••		÷	:		 : :		•••••	 ÷	· · · · · · · · · · · · · · · · · · ·		· · · · · ; ;	· · · · · . :		••••	••••	· · · · : :	••••	•••••			· · · · . · · ·	• •
÷		· · · · ·							• • • •								 														
·	••••••••	÷				 	••••	••••	••••	••••	÷			 ÷			 ÷			•••••	•••••		••••	· · ·	· · · ·	••••			••••	••••	
; .;		; ;;	: :	; ; ;		 								 			 									: ;					
											ļ						 														
		:			-		:				-		•	-			÷		· · ·					:				· · ·			
							:				-																				
•••••	••••••	••••••					•••••		•••••••••		•••••• •			 · · · · · ·			 ••••	••••		•••••	••••		• • • • •	••••	•••••						•••
::::		::::::		:		· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••		:		: :			:			 ÷			•••••		••••		••••							
· · · ·	••••••	· ·				 	••••		••••		÷						 			•••••	•••••		••••		•••••	••••					• •
		·															 ÷														
	•••••••	: 		: :		 								 : 			 	••••		•••••					;						
				: : ;							÷				: 		 		: ;									: ;			
		: 				 								 			 														
÷		: : :																													
					-						-			-			÷					÷									
							÷		÷		-						÷			-											
		•		•									•				 														
::::	••••••	· · · · · · ·		· · · · · ·		 · • · · · • • •	••••	••••	••••	• • <u>•</u> • • • • •				 :		•••••	 ••••	•••••		•••••	•••••		••••	••••	•••••	••••	••••			· · · · · · · · · · · ·	• •
· . · ·							•••••••••••••••••••••••••••••••••••••••		• • • •								 · ·														
÷		÷				 · • · · · · · ·	••••		••••		÷			 ÷			 ÷			•••••	•••••		••••	••••	····;	••••					
						 								 			 			•••••					· · · · .						
														 																	. *
													•••••																		
:		:				 								 		•••••	 						••••		· · · · .	••••				••••	• •
:						· · · · · · · · · · · · · · · · · · ·							•				 														
÷	••••	·: :			••••••	 	••••	••••	• • • •	•••••••••••••••••••••••••••••••••••••••				 			 ••••			•••••	••••		• • • •		•••••					••••	• •
	<u></u>	÷				 								 		•••••	 								· · · · ÷					····	
		÷															 														
						 <u> </u>								 :			 														
							:										÷	NO	RMA	NHU :	RST E	BOYS	5' HI	GH	SCHO	OOL			-		
		:				 	:		:		:			:			:														

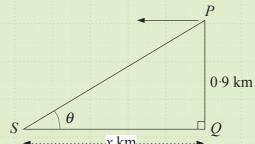
3.2.5 Rates of change

Example 35

[1995 3U HSC Q6] A long cable is wrapped over a wheel of radius 3 metres and one end is attached to a clip at T. The centre of the wheel is at O, and QR is a diameter. The point T lies on the line OR at a distance x metres from O.

The cable is tangential to the wheel at P and Q as shown. Let $\angle POR = \theta$ (in radians).

The length of cable in contact with the wheel is ℓ metres; that is, the length of the arc between P and Q is ℓ metres.

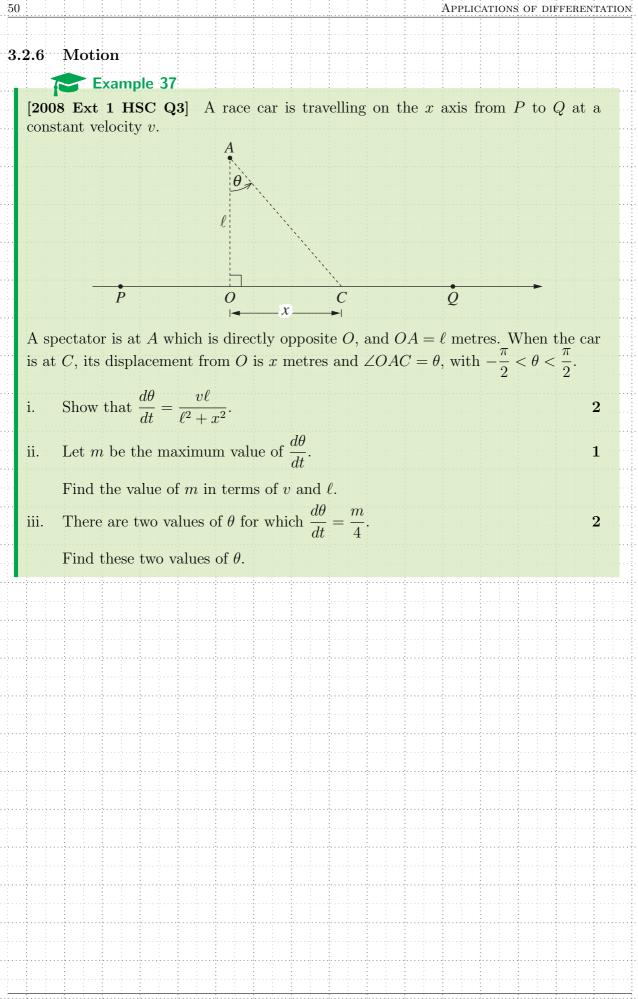

(i)	Explain why $\cos \theta = \frac{3}{x}$.	1
(ii)	Show that $\ell = 3 \left[\pi - \cos^{-1} \left(\frac{3}{x} \right) \right].$	2
(iii)	Show that $\frac{d\ell}{dx} = -\frac{9}{x\sqrt{x^2 - 9}}.$	2
	What is the significance of the fact that $\frac{d\ell}{dx}$ is negative?	
(iv)	Let $s = \ell + PT$.	2
	Express s in terms of x .	
(v)	The clip at T is moved away from O along the line OR at a constant	2
	speed of 2 metres per second.	
	speed of 2 metres per second. Find the rate at which s changes when $x = 10$. Answer: $\frac{\sqrt{91}}{5}$ ms ⁻¹	

NORMANHURST BOYS' HIGH SCHOOL

											 	 : 				 	 													
								•																						
	48	3											<u>.</u>			 		Applic	CATIO	NS (OF DI	FEREN	TAT	ION						
											 					 	 										<u>.</u> .			
								· · · · · ·									 													
											 					 	 										· · · · · · ·			
												:					 													
											 	 :				 	 													
				· · · · · · · · · · · · · · · · · · ·								•					 													
											 			:		 	 									· · · · .			· · · · · .	
								•				•					 													
			····;····								 	 : 	; ;			 	 									· · · · .				
												:					 													
				; ;;				: 			 	 :	: 	: 		 	 									· · · · .	<u>.</u> .	· · · ·	· · · · · ·	
				· · · · · · · · · · · · · · · · · · ·								• • •					 													
								:			 	 :	: 	: 		 	 						:			· · · · .	<u>.</u> .		· · · · · ·	
				• • • • • • • • • • • • • • • • • • •								:					 													
			•••••	: 							 	 : :				 	 									· · · · .	••••			
												• • •					 													
		· · · :	•••••				· · · · ·	: ::			 	 : :	: 	: 		 	 									· · · · .	••••	· · · · .	· · · · · ·	
				· · · · · · · · · · · · · · · · · · ·			-										 													
		•••	•••••	· · · · · · · · · · · · · · · · · · ·		••••	•			• • • • •	 	 : :		: : :		 	 									••••	••••			
																	 		ļ.											
	•••••		•••••								 	 : 				 	 										••••		••••	
				·····			-	•				•					 		· · · · ·											
		•••	•••••	····		••••					 	 •				 	 		<u>.</u>	•••						••••				
				· · · · · · · · · · · · · · · · · · ·			· · · · ·										 		<u>.</u>	•••						••••				
			····;····	· · · · · · · · · · · · · · · · · · ·							 	 				 	 			· · .										
												•					 									••••				
			•••••	····		••••			•••••		 •••••	 •				 	 			•••				• • • •		••••	••••		••••	
				• • • • • • • • • • • • • • • • • • •													 													
			•••••	·····							 	 				 	 				•••						••••			
				••••••••••••••••••••••••••••••••••••••								•••••					 		********											
•••		••••	•••••	••••••••••••••••••••••••••••••••••••••		•••••	•••••				 	 	· · · · ·			 	 			•••	•••••••			• • • •		••••	••••		· · · · · ·	
				5			÷	•				•											*****							
		1		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				 	· · · · ·			 														
				5				•				•••••							*****				* * *							
		1		5				· · · · · · · · · · · · · · · · · · ·				 · · · · · · ·				 			· · · · · · · · · · · · · · · · · · ·								••••			
				* · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •			•				•••••					 						• •		· · · · · · · · · · · · · · · · · · ·					
		Ĩ			•			· · · · · · · · ·				 · · · · · · · · · · · · · · · · · · ·			-	 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
				5	*****			•											*******											
		1		· · · · · · · · · · · · · · · · · · ·																						:::::::::::::::::::::::::::::::::::::::				
				· · · · · · · · · · · · · · · · · · ·	•		-	• •				 •							* *				· · · · · · · · · · · · · · · · · · ·							
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				 · · · · · · ·				 		· · · · · · · · · · · · · · · · · · ·												
												 •				 														
								• • •				 																		
								•										NC	RMAN	HUR	ST BOY	'S' HIGH	SCH	OOL						
-		:					-					:		1					1									-		

Example 36

[1997 3U HSC Q4] A searchlight on the ground at S detects and tracks a plane P that is due east of the searchlight. The plane is flying due west at a constant velocity of 240 kilometres per hour and maintains a constant height of 900 metres above ground level.



Let $\theta(t)$ be the angle of elevation of the plane at time t seconds and let x(t) kilometres be the distance of S to the point Q on the ground directly below P.

(i) Show that
$$\frac{dx}{d\theta} = -\frac{0.9}{\sin^2 \theta}$$

(ii) Show that the rate of change of the angle of elevation of the plane when $\theta = \frac{\pi}{4}$ is equal to $\frac{1}{27}$ radians per second.

 $\mathbf{2}$

Δp	PLICATION	S OF DIFFERE	NTATION	Ň	:		· · ·							:		5
	FLIGATION	S OF DIFFERE		<u>v</u>	* *				· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	 	G
				* *	* · · · · · · · · · · · · · · · · · · ·				* * * * * * * * * * * * * * * * * * *							
										· · · · · · · · · · · · · · · · · · ·			•			
													•			••••••
													• • • • • • • • • • • • • • • • • • •	• • • • • • •	 	
· · · · · · · · · · · · · · · · · · ·															 	
· · · · · · · · · · · · · · · · · · ·					•								• • • • • • • • • • • • • • • • • • •			
· · · · · · · · · · · · · · · · · · ·													· · · · · · · · · · · · · · · · · · ·			
					•					• • • • • • • • • • • • •				• • • • • • • • •		
; ; ;																
· · · · · · · · · · · · · · · · · · ·										 					 	
,										• • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	 	••••••
· · · · · · · · · · · · · · · · · · ·																
: : : :										 		• • • • •		•••	 	
)) 	•••••••••••••••••••••••••••••••••••••••															
; ; ;	·	÷								 					 	
		· · · · · · · · · · · · · · · · · · ·														
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									 · · · · · · · · · · · · · · · · · · ·	•			• • • • • • •	 	•••
																•••
· · · · · · · · · · · · · · · · · · ·										•						
; ; ;;	· · · · · · · · · · · · · · · · · · ·	÷								 					 	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											*			
	·····	÷						••••		· · · · · · · · · · · · · · · · · · ·			•	•••	 	
					•					•						
· · · · · · · · · · · · · · · · · · ·										•						
· · · · · · · · · · · · · · · · · · ·				ļ						 					 	
										· · · · · · · · · · · · · · · · · · ·						
		Further ex	ercises	5												
	Ex 12A	(Pender	et al.,	2019	b)											
	• Al	l questions														
	1 1	Further ex	ercises	s (le	gacy	/ Tex	xthc	ooks	, Y							
	i Ex 1D			(=0	y											
	• Q2	2 last 2 col	umns		• (Q3-1	5			•	X 2	Q1	6-20			
: : 🔳						-				•	-					:
: : · · · · · · · · · · · ·				÷••••••••	÷		÷	• • • • • • • •		 · • • • • • • • • • • • • • • • • • • •	·			•• • • • • •	 	

Section 4

E Knowledge

Integration resulting in Inverse Trigonometric Functions

Learning Goal(s)

OS Skills

How to integrate expressions which result in the inverse trigonometric functions Using various integration techniques

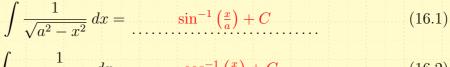
V Understanding

When to apply various integration techniques from Mathematics Advanced

$\ensuremath{\textcircled{}}$ By the end of this section am I able to:

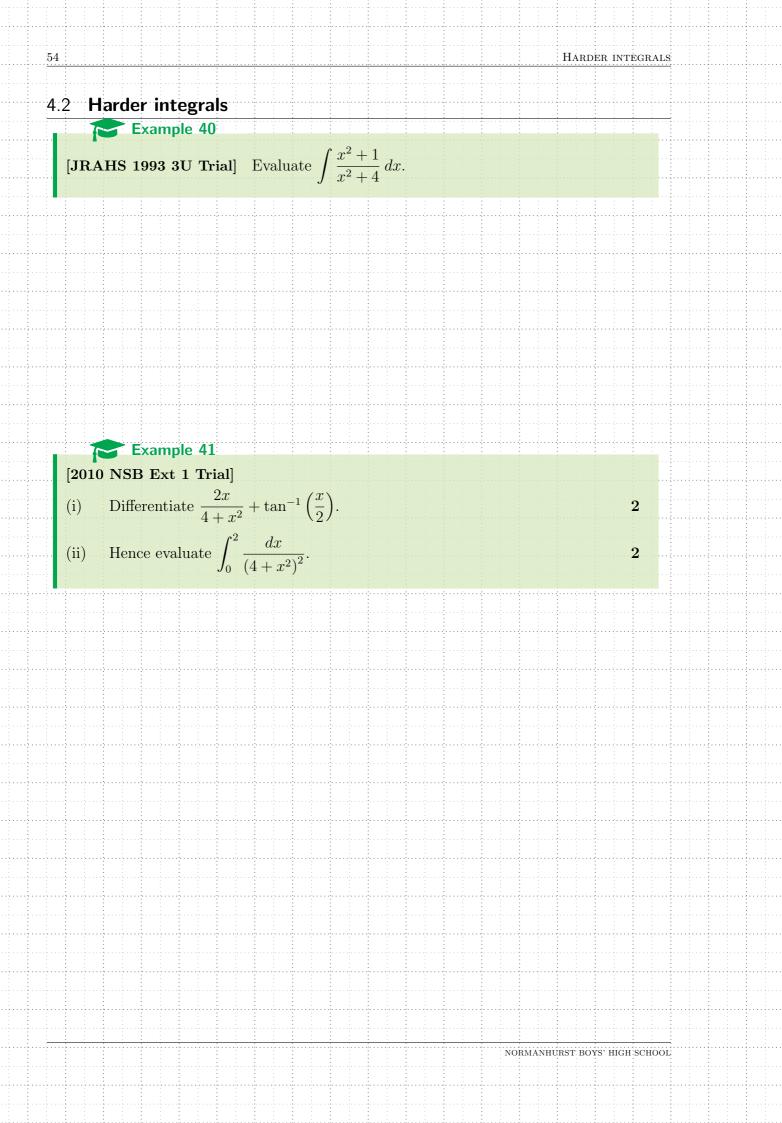
24.13 Integrate expressions of the form $\frac{1}{\sqrt{a^2 - x^2}}$ or $\frac{a}{a^2 + x^2}$

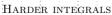
24.14 Calculate the area under a curve

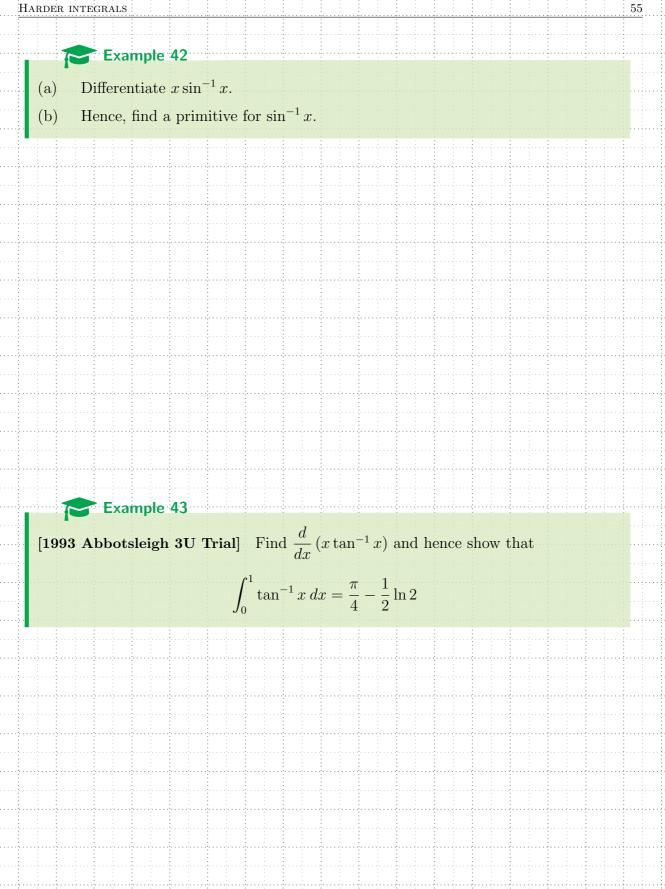

24.15 Calculate areas between curves determined by any functions within the scope of this syllabus

24.16 Use the Trapezoidal rule to estimate areas under curves

4.1 Simple integrals

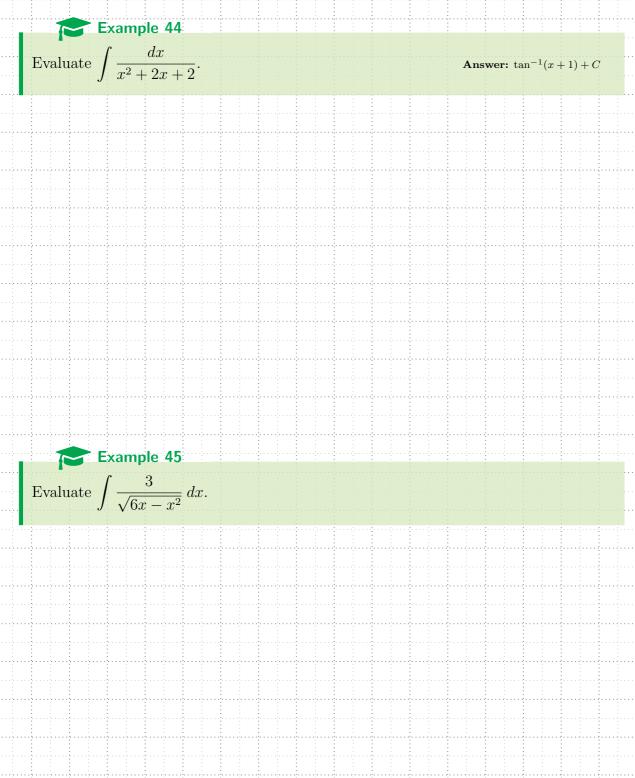

Laws/Results


Ś



$$\int -\frac{1}{\sqrt{a^2 - x^2}} dx = \underbrace{\cos^2 \left(\frac{a}{a}\right) + C}_{(10.2)}$$

Example 38 Evaluate: (a) $\int \frac{2}{\sqrt{9-x^2}} dx.$ (b) $\int \frac{6}{49+25x^2} dx.$ (c) $\int \frac{1}{8+x^2} dx.$ (d) $\int \frac{1}{\sqrt{5-3x^2}} \, dx.$ Evaluate: (a) $\int_0^2 \frac{4}{\sqrt{4-x^2}} dx.$ (b) $\int_0^{\frac{3}{2}} \frac{4}{\sqrt{9-2x^2}} \, dx.$



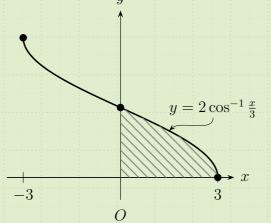
NORMANHURST BOYS' HIGH SCHOOL

Quadratics in denominators

56

• Transform quadratics in denominators into integrands that resemble derivative of sin⁻¹ and tan⁻¹.

4.3 Applications of integration

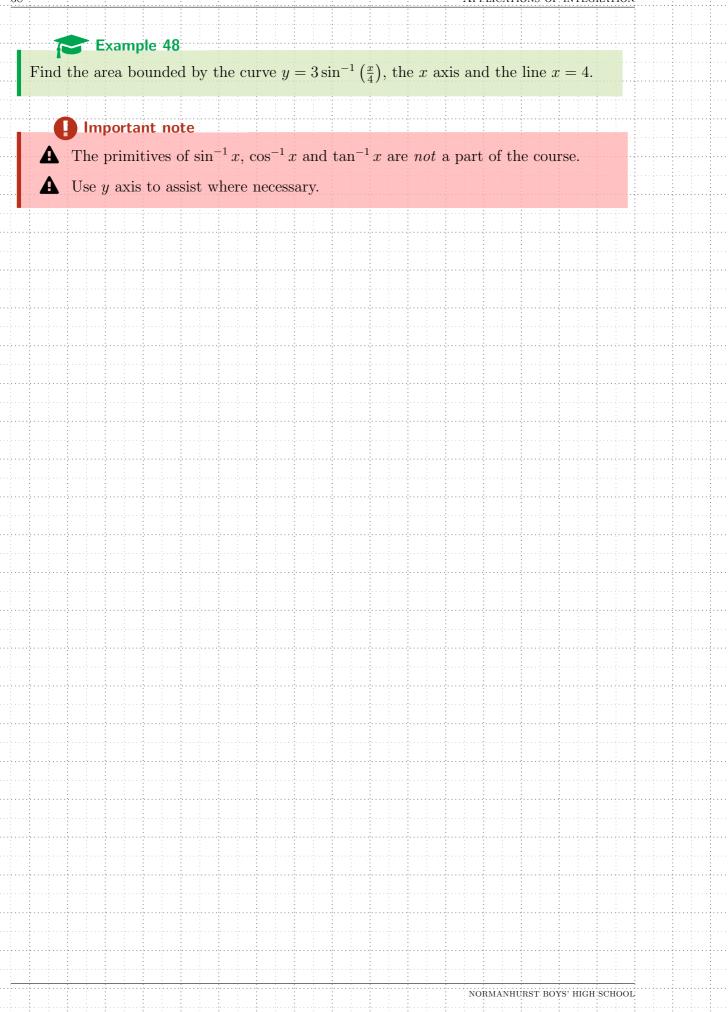

4.3.1 Area problems

Example 46

Find the exact area of the region bounded by the curve $y = \frac{1}{1+x^2}$, the coordinate axes, and the line x = 3.

Example 47

[2001 Ext 1 HSC Q5] The sketch shows the curve y = f(x) where $f(x) = 2 \cos^{-1} \frac{x}{3}$. The area under the curve $0 \le x \le 3$ is shaded.

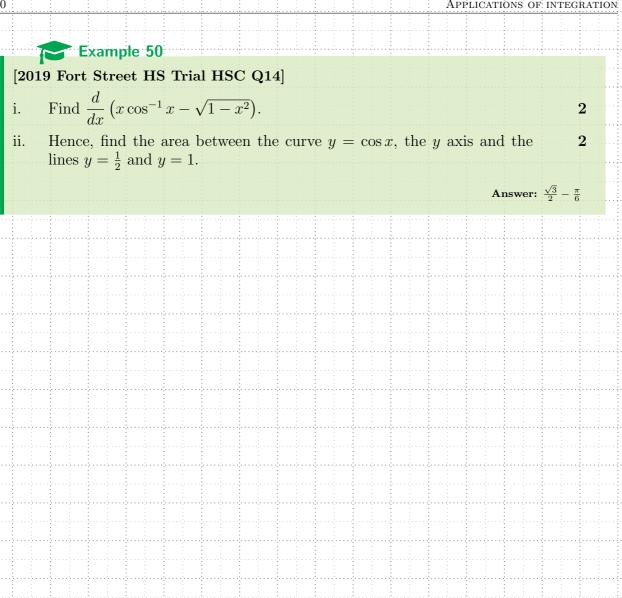


- i. Find the y intercept.
- ii. Determine the inverse function $y = f^{-1}(x)$, and write down the domain D of this inverse function.
- iii. Calculate the area of the shaded region.

1

2

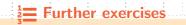
 $\mathbf{2}$



Example 49

- [1993 JRAHS 3U Trial]
- (i) Neatly sketch the graph of $y = \sin^{-1} x$, stating its domain and range.
- (ii) By considering the graph in (i) or otherwise, find the exact value of

 $\int_0^{\frac{1}{2}} \sin^{-1} x \, dx$


Applic	A TTO	NGOE	 INTT 	FOD	TION
	JAIIO	No. Of	. 118 1 1	ĽGhr	110h

4.3.2 Motion/Rates of change

Example 51

- [Ex 9F Q9] As a particle moves around a circle, its angular velocity is given by
 - $\frac{d\theta}{dt} = \frac{1}{1+t^2}$
- (a) Given that the particle starts at $\theta = \frac{\pi}{4}$, find θ as a function of t.
- (b) Hence find t as a function of θ .
- (c) Using the result from part (a), show that $\frac{\pi}{4} \le \theta < \frac{3\pi}{4}$, and hence explain why the particle never moves through an angle of more than $\frac{\pi}{2}$.

Ex 12B

• Q1-20

i⊒ Further exercises (Legacy Textbooks) Ex 1E

• Q2, 3 last 2 columns • Q4-24

NESA Reference Sheet – calculus based courses

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

 $A = \frac{\theta}{360} \times \pi r^2$ $A = \frac{h}{2} (a + b)$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

 $V = \frac{1}{3}Ah$ $V = \frac{4}{3}\pi r^3$

Functions

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

 $(x-h)^{2} + (y-k)^{2} = r^{2}$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_{n} = a + (n - 1)d$$

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2}(a + l)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1 - r^{n})}{1 - r} = \frac{a(r^{n} - 1)}{r - 1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_{a} a^{x} = x = a^{\log_{a} x}$$
$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$
$$a^{x} = e^{x \ln a}$$

- 1 -

Trigonometric Functions Statistical Analysis $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ An outlier is a score $z = \frac{x - \mu}{\sigma}$ less than $Q_1 - 1.5 \times IQR$ $A = \frac{1}{2}ab\sin C$ more than $Q_3 + 1.5 \times IQR$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Normal distribution $c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\sqrt{3}$ $l = r\theta$ $A = \frac{1}{2}r^2\theta$ z Ò -3 -2 -1approximately 68% of scores have **Trigonometric identities** z-scores between -1 and 1 $\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$ approximately 95% of scores have z-scores between -2 and 2 $\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$ approximately 99.7% of scores have z-scores between -3 and 3 $\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$ $E(X) = \mu$ $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$ $\cos^2 x + \sin^2 x = 1$ Probability **Compound angles** $P(A \cap B) = P(A)P(B)$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$ Continuous random variables $P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$ $\cos A = \frac{1-t^2}{1+t^2}$ $P(a < X < b) = \int^{b} f(x) dx$ $\tan A = \frac{2t}{1-t^2}$ $\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$ **Binomial distribution** $p(v - r) - {n \choose n} r (1 - n)^{n - r}$ $\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

- 2 -

 $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$

 $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$

 $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$

 $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

Differential Calculus

Integral Calculus

$y = f(x)^{n} \qquad \frac{dy}{dx} = nf'(x)[f(x)]^{n-1} \qquad \text{where } n \neq -1$ $y = uv \qquad \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \int f'(x)\sin f(x)dx = -\cos f(x) + c$ $y = g(u) \text{ where } u = f(x) \qquad \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \qquad \int f'(x)\sin f(x)dx = -\cos f(x) + c$ $y = g(u) \text{ where } u = f(x) \qquad \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \qquad \int f'(x)\cos f(x)dx = \sin f(x) + c$ $y = \frac{u}{v} \qquad \frac{dy}{dx} = f'(x)\cos f(x) \qquad \int f'(x)\sec^{2} f(x)dx = \tan f(x) + c$ $y = \sin f(x) \qquad \frac{dy}{dx} = -f'(x)\sin f(x) \qquad \int f'(x)e^{f(x)}dx = e^{f(x)} + c$ $y = \cos f(x) \qquad \frac{dy}{dx} = f'(x)\sec^{2} f(x) \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c$ $y = e^{f(x)} \qquad \frac{dy}{dx} = f'(x)e^{f(x)} \qquad \int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)} \qquad \int \frac{f'(x)}{\sqrt{a^{2} - [f(x)]^{2}}}dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = a^{f(x)} \qquad \frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$
$y = g(u) \text{ where } u = f(x) \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $y = g(u) \text{ where } u = f(x) \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\int f'(x)\cos f(x) dx = \sin f(x) + c$ $\int f'(x)\sec^2 f(x) dx = \tan f(x) + c$ $\int f'(x)\sec^2 f(x) dx = \tan f(x) + c$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ $\int f'(x)e^{f(x)} dx = \ln f(x) + c$ $\int \frac{f'(x)}{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$	$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	
$y = \frac{u}{v}$ $y = \frac{u}{v}$ $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int f'(x)\cos f(x)dx = \sin f(x) + c$ $\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$ $\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$ $\int f'(x)e^{f(x)}dx = e^{f(x)} + c$ $\int f'(x)e^{f(x)}dx = \ln f(x) + c$ $\int \frac{f'(x)}{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}}dx = \sin^{-1}\frac{f(x)}{a} + c$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}}dx = \sin^{-1}\frac{f(x)}{a} + c$	y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
$y = \sin f(x) \qquad \frac{dy}{dx} = f'(x)\cos f(x)$ $y = \cos f(x) \qquad \frac{dy}{dx} = -f'(x)\sin f(x)$ $y = \tan f(x) \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x)$ $y = e^{f(x)} \qquad \frac{dy}{dx} = f'(x)e^{f(x)}$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{f'(x)e^{f(x)}dx = \ln f(x) + c}{\ln a} + c$ $\int \frac{f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c}{\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$ $\int \frac{f'(x)e^{f(x)}dx}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$	y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \cos f(x) \qquad \frac{dy}{dx} = -f'(x)\sin f(x)$ $y = \tan f(x) \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x)$ $y = e^{f(x)} \qquad \frac{dy}{dx} = f'(x)e^{f(x)}$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $y = a^{f(x)} \qquad \frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$ $\int f'(x)e^{f(x)}dx = \ln f(x) + c$ $\int \frac{f'(x)}{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}}dx = \sin^{-1}\frac{f(x)}{a} + c$	$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \cos f(x) \qquad \frac{dy}{dx} = -f'(x)\sin f(x) \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c$ $y = \tan f(x) \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x) \qquad \int \frac{f'(x)}{f(x)}dx = \ln f(x) + c$ $y = e^{f(x)} \qquad \frac{dy}{dx} = f'(x)e^{f(x)} \qquad \int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$ $y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)} \qquad \int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}}dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = a^{f(x)} \qquad \frac{dy}{dx} = (\ln a)f'(x)a^{f(x)} \qquad \int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}}dx = \sin^{-1}\frac{f(x)}{a} + c$	$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \tan f(x)$ $y = e^{f(x)}$ $\frac{dy}{dx} = f'(x)e^{f(x)}$ $\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$ $\int \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = a^{f(x)}$ $\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	
$y = \ln f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)} \qquad \qquad \int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$ $y = a^{f(x)} \qquad \qquad \frac{dy}{dx} = (\ln a) f'(x) a^{f(x)} \qquad \qquad \int \frac{dy}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$	$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	
$y = a^{f(x)} \qquad \qquad \frac{dy}{dx} = (\ln a)f'(x)a^{f(x)} \qquad \qquad$	$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
	$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$\int f(x) = \frac{1}{1} \tan \frac{-1}{2} \int f(x) = \frac{1}{2} \tan \frac{-1}{2} \int \frac{1}{2} \sin \frac{-1}{2} \sin \frac{-1}{2} \sin \frac{-1}{2} \int \frac{1}{2} \sin \frac{-1}{2} \sin \frac{-1}$	$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int f'(x) = \frac{1}{\tan^{-1}}f(x) + c$
$y = \log_a f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)} \qquad \qquad \int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$	$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int \frac{dx}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan \frac{1}{a} + c$
$y = \sin^{-1} f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \qquad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	$y = \sin^{-1} f(x)$		
$y = \cos^{-1} f(x) \qquad \qquad \frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \qquad \int_a^b f(x) dx$	$y = \cos^{-1} f(x)$		
$y = \tan^{-1} f(x) \qquad \qquad \frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2} \qquad \qquad \approx \frac{b - a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$	$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$
- 3 -		- :	3 -

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} \left| \underline{u} \right| &= \left| x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \underline{u} \right| \left| \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

 $z = a + ib = r(\cos \theta + i\sin \theta)$ $= re^{i\theta}$ $\left[r(\cos \theta + i\sin \theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

 $\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$ $x = a\cos(nt + \alpha) + c$ $x = a\sin(nt + \alpha) + c$ $\ddot{x} = -n^2(x - c)$

– 4 –

© 2018 NSW Education Standards Authority

References

- Fitzpatrick, J. B., & Aus, B. (2019). New Senior Mathematics Extension 1 for Years 11 & 12. Pearson Education.
- Pender, W., Sadler, D., Shea, J., & Ward, D. (2000). Cambridge Mathematics 3 Unit Year 12 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019a). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019b). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 12 (1st ed.). Cambridge Education.